
Math. Struct, in Comp. Science (1991), vol. I, pp. 49-67

A categorical manifesto f

JOSEPH A. GOGUEN

Programming Research Group, University of Oxford, SRI International, Menlo Park CA, USA

Received 6 August 1989; revised 14 August 1990

This paper tries to explain why and how category theory is useful in computing science, by
giving guidelines for applying seven basic categorical concepts: category, functor, natural
transformation, limit, adjoint, colimit and comma category. Some examples, intuition, and
references are given for each concept, but completeness is not attempted. Some additional
categorical concepts and some suggestions for further research are also mentioned. The
paper concludes with some philosophical discussion.

0. Introduction

In this paper we will try to explain why category theory is useful in computing science. The
basic answer is that computing science is a young field that is growing rapidly, is poorly
organised, and needs all the help it can get, and that category theory can provide help with
at least the following:

—Formulating definitions and theories. In computing science, it is often more difficult to
formulate concepts and results than to give a proof. The seven guidelines of this paper
can help with formulation; the guidelines can also be used to measure the elegance and
coherence of existing formulations.

—Carrying out proofs. Once basic concepts have been correctly formulated in a categorical
language, it often seems that proofs 'just happen': at each step, there is a 'natural' thing
to try, and it works. Diagram chasing (see section 1.2) provides many examples of this.
It could almost be said that the purpose of category theory is to reduce all proofs to such
simple calculations.

—Discovering and exploiting relations with other fields. Sufficiently abstract formulations
can reveal surprising connections. For example, an analogy between Petri nets and the
A-calculus might suggest looking for a closed category structure on the category of Petri
nets (Meseguer and Montanari, 1988).

—Dealing with abstraction and representation independence. In computing science, more
abstract viewpoints are often more useful, because of the need to achieve independence
from the often overwhelmingly complex details of how things are represented or
implemented. A corollary of the first guideline (given in section 1) is that two objects are
'abstractly the same' iff they are isomorphic; see section 1.1. Moreover, universal

t The research reported in this paper has been supported in part by grants from the Science and Engineering
Research Council, the National Science Foundation, and the System Development Foundation, as well as
contracts with the Office of Naval Research and the Fujitsu Corporation.

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

J. A. Goguen 50

constructions (i.e. adjoints) define their results uniquely up to isomorphism, i.e.
* abstractly' in just this sense.

—Formulating conjectures and research directions. Connections with other fields can suggest
new questions in your own field. Also the seven guidelines can help to guide research. For
example, if you have found an interesting functor, then you might be well advised to
investigate its adjoints.

—Unification. Computing science is very fragmented, with many different subdisciplines
having many different schools within them. Hence, we badly need the kind of conceptual
unification that category theory can provide.

Category theory can also be abused, and in several different styles. One style of abuse is
specious generality, in which some theory or example is generalised in a way that does not
actually include any new examples of genuine interest. A related style of abuse is categorical
overkill, in which the language of category theory is used to describe phenomena that do
not actually require such an elaborate treatment or terminology. An example is to describe
a Galois connection in the language of adjoint functors.

Category theory has been called 'abstract nonsense' by both its friends and its
detractors. Perhaps what this phrase suggests to both is that category theory has relatively
more form than content, compared to other areas of mathematics. Its friends claim this as
a virtue, in contrast to the excessive concreteness and representation dependence of set
theoretic foundations, and the relatively poor guidance for discovering elegant and
coherent theories that they provide. This is discussed further in section 9.

Category theory can also be used in quite concrete ways, because categories are after all
just another algebraic structure, generalising both monoids and partial orders (see also
example 1.4 below).

This paper presents seven guidelines for using category theory, each with some general
discussion and specific examples. There is no claim to originality, because I believe the
underlying intuitions are shared by essentially all workers in category theory, although they
have been perhaps understandably reluctant to place such dogmatic assertions in textbooks
or other written documents.1 The guidelines are necessarily imprecise, and will seem
exaggerated if taken too literally, because they are not objective facts, but rather heuristics
for applying certain mathematical concepts. In particular, they may seem difficult to apply,
or even impossible, in some situations, and they may need refinement in others. As a
reminder that they should not be taken too dogmatically, I will call them dogmas.

No attempt is made to be exhaustive. In particular, the technical definitions are omitted,
because our purpose is to provide intuition, and the definitions can be found in any
textbook. Thus, if you are a newcomer to category theory, you will need to use some text
in connection with this paper. Unfortunately, no existing text is ideal for computing
scientists, but perhaps that by Goldblatt (1979) comes closest. The classic text by MacLane
(1971) is warmly recommended for those with sufficient mathematics background, and
Herrlich and Streckier's book (1973) is admirably thorough; see also Barr and Wells (1984)
1 As far as I know, the first such attempt is my own in Goguen et at. (1973), which gives four of the guidelines

here. The only other attempt that I know is due to Lambck and Scott (1986), who give a number of'slogans'
in a similar style.

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

A categorical manifesto 51

and Lambek and Scott (1986). Goguen (1989) gives a relatively concrete and self-contained
account of some basic category theory for computing scientists, using theories, equations,
and unification as motivation, and many examples from that paper are used here.

1. Categories

The first dogma is as follows:
To each species of mathematical structure, there corresponds a category whose objects have
that structure, and whose morphisms preserve it.

It is part of this guideline that in order to understand a structure, it is necessary to
understand the morphisms that preserve it. Indeed, category theorists have argued that
morphisms are more important than objects, because they reveal what the structure really
is. Moreover, the category concept can be defined using only morphisms. Perhaps the bias
of modern Western languages and cultures towards objects rather than relationships
accounts for this (see Maturana and Varela, 1987, and Whitehead, 1969 for some related
discussion). By way of notation, we use ' ; ' or composition, and \A for the identity
morphism at an object A.

1.1. Sets. If we take sets to be objects, then their morphisms are clearly going to be
functions. A set morphism, however, is not just a set of ordered pairs, because it must also
specify particular source and target sets. This is consistent with practice in computation
theory which assigns types to functions. The set theoretic representation of functions is an
artifact of the set theoretic foundations of mathematics, and like all such representations,
has accidental properties beyond those of the concept it is intended to capture. One of those
properties is that any two sets of ordered pairs can be composed to yield a third. The
category Set of sets embodies a contrary point of view, that each function has a domain in
which its arguments are meaningful, a codomain in which its results are meaningful, and
composition of functions is only allowed when meaningful in this sense. (See Goldblatt,
1979, for related discussions.)

1.2. Relations. Just as with functions, it seems desirable to take the view that the
composition of relations is only meaningful when the domains match. Thus, we may define
a relation from a set Ao to a set Ax to be a triple (Ao, R, Ax) with R £ Ao x Alt and then allow
its composition with (BotStBy) to be defined iffy^ = Bo. This gives rise to a category that
we denote Rel, of which Set can be considered a subcategory.

1.3. Graphs. A graph G consists of a set E of edges, a set N of nodes, and two functions
60,6j: £-> AT which give the source and target of each edge, respectively. Because the major
components of graphs are sets, the major components of their morphisms should be
corresponding functions that preserve the additional structure. Thus a morphism from
G = (E, N, 60, dx) to G' = (£', N\ VQ, d[) consists of two functions, / : E-* E' and g: Ar-* N\
such that the following diagram commutes in Set for i = 0,1:

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

J. A. Goguen 52

To show that we have a category Graph of graphs, we must show that a composition of two
such morphisms is another, and that a pair of identity functions satisfies the diagrams and
also serves as an identity for composition.

1.4. Paths in a graph. Given a graph G, each path in G has a source and a target node
in G, and two paths, p and p\ can be composed to form another path p\p' iff the source
of p' equals the target of p. Clearly this composition is associative when defined, and each
node can be given an 'identity path' having no edges. This category is denoted Pa(G).
(Details may be found in MacLane, 1971; Goguen et al.t 1973; Goguen, 1974; and many
other places.)

1.5. Automata. An automaton consists of an input set X, a state set St an output set Yy

a transition function f:XxS->S, an initial state soeS, and an output function g:S-* Y.
What does it mean to preserve all this structure? Because the major components of
automata are set?, the major components of their morphisms should be corresponding
functions that preserve the structure. Thus a morphism from A — (X,S, Y,sotftg) to
A' = (X',S', Y\s'0J\g') should consist of three functions, Jr.X^X', i:S-*S', and

j : Y-+ Y', such that the following diagrams commute.in Set:

j

r

where {•} denotes an arbitrary one point set (with point *). It must be shown that a
composition of two such morphisms is another, and that a triple of identities satisfies the
diagrams and serves as an identity for composition. These checks show that we have a
category Aut of automata, and their simplicity increases our confidence in the correctness
of the definitions (Goguen, 1973).

1.6. Types. Types are used to classify 'things', and according to the first dogma, they
should form a category having types as objects; of course, depending on what is being
classified, different categories will arise.

A simple example is finite product types, which are conveniently represented by natural
numbers, with morphisms that describe what might be called 'register transfer operations'
among tuples of * registers \ Thus, new indicates an /i-tuple </lf ...,/„> of data items in n
'registers', and a morphism f:m-*-n is a function {l,...,/i}->{l,...,iw} indicating that the
content of registery(0 should be transferred to register /, for / = l,...,/i. In fact, if we
identify the number n with the set {1,...,/?} (and 0 with 0) , then this category is the opposite

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

A categorical manifesto 53

of a subcategory of Set; let us denote it J/". A variant of JT has as its objects the finite
subsets of a fixed countable set X, and as morphisms again the opposites of functions
among these, so that we get another opposite of a subcategory of Set, denoted say SC. Here,
the 'registers' are denoted by 'variable symbols* from X, rather than by natural numbers.
Going a little further, we can assign sorts from a set S to the symbols in X, and require that
the morphisms preserve these sorts. Let us denote this category &s. See Goguen (1989) for
details.

1.7. Substitutions. Two key attributes of a substitution are the set of variables into which
it substitutes, and the set of variables that occur in what it substitutes. Thus, substitutions
have natural source and target objects, each a set of variables, as in example 1.6 above.
Clearly there are identity substitutions for each set of variables (substituting each variable
for itself), and the composition of substitutions is associative when defined. Thus, we get
a category with substitutions as morphisms (Goguen, 1989).

1.8. Theories. In his 1963 thesis, Lawvere (1963) developed a very elegant approach to
universal algebra, in which an algebraic theory is defiend to be a category T whose
morphisms correspond to equivalence classes of terms, and whose objects indicate the
variables involved in these terms, as in example 1.6 above. In this approach, theories are
closed under finite products (as defined in example 4.1 below). Although Lawvere's original
development was unsorted, it easily extends to the many-sorted case, and in many other
ways, including the so-called 'sketches' studied by Ehresmann, Gray, Barr, Wells and
others; for example, see Barr and Wells (1988). Of course, all the theories of a given kind
form a category.

1.1. Isomorphism

One very simple, but still significant, fruit of category theory is a general definition of
isomorphism, suitable for any species of structure at all: a morphism / : A->B is an
isomorphism in a category # iff there is another morphism g:B^-A in <$ such that
g\f- \A and f;g = 1B. In this case, the objects A and B are isomorphic. It is a well-
established principle in abstract algebra, and now in other fields as well, that isomorphic
objects are abstractly the same, or more precisely:

Two objects have the same structure iff they are isomorphic, and an 'abstract object' is an
isomorphism class of objects.

This demi-dogma can be seen as a corollary of the first dogma. It provides an immediate
check on whether or not some structure has been correctly formalised: unless it is satisfied,
the objects, or the morphisms, or both, are wrong. This principle is so pervasive that
isomorphic objects are often considered the same, and 'the X" is used instead of'an A"
when X is actually only defined up to isomorphism. In computing science, this principle
guided the successful search for the right definition of'abstract data type' in Goguen et al.
(1976).

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

J. A. Goguen 54

1.2. Diagram chasing

A useful way to get an overview of a problem, theorem, or proof, is to draw one or more
diagrams that show the main objects and morphisms involved. A diagram commutes iff
whenever p and p' are paths with the same source and target, then the compositions of the
morphisms along these two paths are equal. The fact that pasting two commutative
diagrams together along a common edge yields another commutative diagram provides a
basis for a purely diagrammatic style of reasoning about equality of compositions. Because
it is valid for diagrams in any category whatever, this proof style is very widely applicable;
for example, it applies to substitutions (as in example 1.5). Moreover, it has been
extended with conventions for pushouts, for uniqueness of morphisms, and for certain
other situations. Often proofs are suggested just by drawing diagrams for what is known
and what is to be proved. A simple illustration from example 1.3 is to prove that a
composition of two graph morphisms is another graph morphism; all we have to do is paste
together the corresponding diagrams for the two morphisms.

2. Functors

The second dogma says:
To any natural construction on structures of one species, yielding structures of another
species, there corresponds a functor from the category of the first species to the category
of the second.

It is part of this dogma that a construction is not merely a function from objects of one
species to objects of another species, but must also preserve the essential relationships
among objects, including their structure preserving morphisms, and compositions and
identities for these morphisms. This provides a test for whether or not the construction has
been properly formalised. Of course, functoriality does not guarantee correct formulation,
but it can be surprisingly helpful in practice.

2.1. Free monoids. It is quite common in computing science to construct the free monoid
X* over a set X. It consists of all finite strings xx...xn from X, including the empty string
A. This construction gives a functor from the category of sets to the category of monoids,
with a function/:X-*- Yinducing/*:X*-*- Y* b y sending A to A, and sending xl...xH to
f{xl)...J[xn). This functor is called the 'polymorphic list type constructor' in functional
programming.

2.2. Behaviours. Given an automaton A = (X,S, Y,f,g), its behaviour is a function
b:X*-> y, from the monoid X* of all strings over X, to Y, defined by b(u) = g(J[u)),
where / i s defined byJ{A) = .y0 and J[ux) =y(jc,/[w)), for *e A'and ueX*. This construction
should be functorial. For this, we need a category of behaviours. The obvious choice is
to let its objects be pairs (X,b:X*-*> Y) and to let its morphisms from (X,b:X*-> Y) to
(X',b':X'*-* Y') be pairs (hj) where h:X-+X' and j : Y-+ Y\ such that the diagram

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

A categorical manifesto 55

commutes in Set. Denote this category Beh and define B:Aut->Beh by B(X, S, 7,/,g) = g'J
and B(h, ij) = (//,/). That this is a functor helps to confirm the elegance and coherence of
the previous definitions. See Goguen (1973).

2.3. Models. In the Lawvere approach to universal algebra (Lawvere, 1963), an algebra
is a functor from a theory T to Set. Here, 'construction' takes the meaning of
'interpretation': the abstract structure in T is interpreted (i.e. constructed) concretely in
Set, i.e. these functors must preserve finite products. More generally, if T is some kind of
theory, then 'models' of T are functors MiJ^-Set that preserve the structure of these
theories, e.g. finite products. More generally, we can take models of T in a suitable category
with finite products, as finite product-preserving functors. For example, many sorted
algebras arise as functors from a theory over the type system SCS; example 1.5 can be seen
as an example of this, by taking S to have three elements.

2.4. Forget it. If all widgets are whatsits, then there is a 'forgetful functor' from the
category of widgets to the category of whatsits. For example, every group is a monoid by
forgetting its inverse operation, and every monoid is a semigroup by forgetting its identity.
Notice that a ring (with identity) is a monoid in two different ways, one for its additive
structure and one for its multiplicative structure.

2.5. Categories. Of course, the (small) categories also form a category, with functors as
morphisms. It is denoted Cat.

2.6. Diagrams and the path category construction. The construction in example 1.4 of
the category Pa{G) of all paths in a graph G gives rise to a functor Pa: Graph -• Cat from
graphs to categories. Then a diagram in a category # , with shape a graph G, is a functor
Z):Pa(G)-*tf. It is conventional to write just Z):G->tf, and even to call D a 'functor',
because D:Pa{G)-+%? is in fact fully determined by its restriction to G, which is a graph
morphism; see example 6.2 below.

2.7. Programs and program schemes. A non-deterministic flow diagram program P with
parallel assignments, go-to's, and arbitrary built-in data structures, including arbitrary
functions and tests, can be seen as a functor from a graph G (the program's 'shape') into
the category Rel whose objects are sets and whose morphisms are relations. An edge
e\n-*ri in G corresponds to a program statement, and the relation P{e)\ P(n)-• P(n') gives
its semantics. For example, the test 'if A' > V on natural numbers corresponds to the partial
identity function &»->w defined ifT X> 2, and the assignment 'X:= X—V corresponds to
the partial function to -• a> sending X to X— 1 when X > 0. The semantics of P with input

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

J. A. Goguen 56

node n and output node «' is then given by the formula

P{n,n') = \J{P(p)\p:n-*n'ePa(G)}.

This approach originated in Burstall (1972). Techniques that allow programs to have
syntax as well as semantics are described in Goguen (1974).2 A program scheme is a functor
P:G-*T into a theory T 'enriched* with a partial order structure on its morphism sets
T(A, B) (the reader familiar with 2-categories should note that this makes T a 2-category). A
semantics for statements then arises by giving a functor A: T -> Rel, that is, an interpretation
for T, also called a T-algebra. The semantics of a program is then computed by the above
formula for the composition P;A:G-+Rel. There seems to be much more research that
could be done in this area. For example, Goguen and Meseguer (1983) give an inductive
proof principle for collections of mutually recursive procedures, and it would be interesting
to consider other program constructions in a similar setting.

2.8. Theory interpretations. Extending the discussion in example 2.3, an 'interpretation'
of a theory Tin a theory T should be a functor F: !T-> 7" which preserves theory structure
(e.g. types and finite products). Such functors are the same thing as theory morphisms. In
particular, interpretations of program schemes, which of course are programs, will arise in
this way.

2.9. Polymorphic type constructors. If we think of the types of a functional programming
language as forming a category 2T, with objects like I n t and Bool, then polymorphic type
constructors, like l i s t , are endofunctors on ^", that is, functors y-+&~\ some others
would be s e t and l i s t x l i s t , the latter sending a type a to the type l i s t (a) x l i s t (a) .

3. Naturality

The third dogma says:
To each natural translation from a construction F:sf-+08 to a construction G:s/-*3l
there corresponds a natural transformation F=> G.

Although this looks like a mere definition of the phrase 'natural translation', it can
nevertheless be very useful in practice. It is also interesting that this concept was the
historical origin of category theory, since Eilenberg and MacLane (1945) used it to
formalise the notion of an equivalence of homology theories, and then found that for this
definition to make sense, they had to define functors, and for functors to make sense, they
had to define categories. (This history also explains why homology theory so often appears
in categorical texts, and hence why so many of them are ill-suited for computing scientists.)

3.1. Homomorphisms. As already indicated, in the Lawvere approach to universal
algebra, algebras are functors, and so we should expect homomorphisms to be natural
transformations; and indeed, they are.

* Only the original 1972 conference version contains this definition.

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

A categorical manifesto 57

3.2. Natural equivalence. A natural transformation tj:F=*>G is a natural equivalence iff
each i}A:F(A)-*G{A) is an isomorphism. This is the natural notion of isomorphism for
functors, and is equivalent to the existence of v\G=>Fsuch that v;y = \F and y;i> = lc.
This is also exactly the concept that motivated Eilenberg and MacLane, and in the context
of example 3.1, it specialises to isomorphism of algebras.

3.3. Data refinement. A graph with its nodes labelled by types and its edges labelled by
function symbols can be seen as an impoverished Lawvere theory that has no equations and
no function symbols with more than one argument. However, such theories still admit
algebras, which are functors into Set, and homomorphisms, which of course are natural
transformations. These algebras can be viewed as data representations for the basic data
types and functions of a programming language, and their homomorphisms can be viewed
as data refinements. Considered in connection with the basic program construction
operations of a language, this can lead to some general techniques for developing correct
programs (Hoare and He, 1988). It would be interesting to extend this to more general
variants of Lawvere theories (such as many-sorted theories or sketches), and to the more
general data representations studied in the abstract data type literature (e.g. Goguen et a/.,
1976; Ehrich, 1982).

3.4. Program homomorphisms. Because example 2.7 defines programs as functors, we
expect program homomorphisms to be natural transformations between programs. Indeed,
Burstall (1972) shows that a weak form of Milner's program simulations (Milner, 1971)
arises in just this way. In Goguen (1974), this is generalised to programs that may have
different shapes, and to maps from edges to paths, by defining a homomorphism from
Po: Go -> tf to Pj: Gx -> # to consist of a functor F: Go -> Pa(G^ and a natural transformation
ij:P0->F;Pv Some theory and applications for this are also given in Goguen (1974),
including techniques for proving correctness, termination, and equivalence, by unfolding
programs into equivalent infinite trees.

3.5. Polymorphic functions. If polymorphic type constructors are functors (as in example
2.8), then polymorphic functions should be natural transformations; and indeed, they
are. Examples include

append: listlist-»-list

and
reverse: list-*list

3.1.6. Functor categories. Let sJ and 08 be categories. Then there is a category, denoted
Catln/,08], whose objects are the functors from s/ to ^?, and whose morphisms are natural
transformations. In particular, if T is a theory, then the T-algebras are a subcategory of
Cat\Ty Set].

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

J. A. Goguen 58

4. Limits

The fourth dogma says:
A diagram D in a category <€ can be seen as a system of constraints, and then a limit ofD
represents all possible solutions of the system.

In particular, if the diagram represents some physical (or conceptual) system, then the limit
provides an object which (together with its projection morphisms) represents all possible
behaviours of the system that are consistent with the given constraints. This intuition goes
back to some work on General System Theory from 1969-74 (Goguen, 1971; Goguen and
Ginali, 1978), and has many applications in computing science.

4.1. Products. An early achievement of category theory was to give a precise definition
for the motion of'product', which was previously known in many special cases, but only
understood vaguely as a general concept. The definition is due to MacLane (1948).

4.2. Product types. Given types Tx and T2, their 'parallel composition' is their product in
the category ST of types. Thus, a morphism/: Tx x T2-+ T takes two 'inputs' in parallel, of
types Tx and Tv and returns one output, of type T. It is usual to assume that a category of
types used in defining some kind of theory has finite products, including an empty product
(the product of no factors, i.e. a final object), usually denoted 1. Both Jf and SC are
subcategories of Setop, and products in them are disjoint unions in Set.

4.3. Theories. A generalised Lawvere theory T:^"->^/ over a type system 2T (assumed to
have finite products) is a finite product-preserving functor that is surjective on objects, from
2T to a category s/ with finite products. Except for 'degenerate' cases, a theory T :y -> A
is bijective on objects, and we can assume that \&~\ = \s/\ and that ^" is a subcategory of
j / ; hence, we may identify T and s/.

A morphism of theories over ST is a finite product-preserving functor which also preserves
9~. An algebra of a theory T: &-*• s/ is a finite-product preserving functor to Set (or more
generally, to a category # with finite products). Of course, homomorphisms of T-algebras
are natural transformations, giving a category of T-algebras. When 3T = Jr, we get the
classical unsorted general algebras, in Lawvere form. When 2T — 9C, with 3C 5-sorted, we
get 5-sorted general algebras. Goguen (1989) also discusses congruences and quotients of
generalised Lawvere theories.

4.4. Equations and unification. We can think of a pair fg\T-+T' of morphisms in a
theory as an equation. Then, by the fourth dogma, the most general solution of this
equation is given by the equaliser of/and g, if it exists. For the classical case of unsorted,
anarchic (i.e. obeying no laws) theories, the morphisms are terms, and equalisers give most
general unifiers. More general kinds of unification arise by going to more general kinds of
theories; for example, imposing associative and commutative laws on some operations in

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

A categorical manifesto 59

the theory leads to so-called AC-unification. For some theories, only weak equalisers can
be found; these weaken the 'there exists a unique morphism' requirement to mere
existence. In fact, weak equalisers formalise the classical definition of unifiers; nonetheless,
the stronger condition is often satisfied in practice. Generalising again, a system of
constraints is a diagram in a theory, and its most general solution is given by its limit, if it
exists.

There are many examples of this situation: solving systems of linear equations;
polymorphic type inference; unification in the sense of 'unification grammars' in
linguistics; solving Scott domain equations; and least fixpoints. All these examples (and
some others) are discussed in more detail in Goguen (1989), as are some techniques for
proving that unifiers exist. Another example is the justification of the formula in example
2.7 for the semantics of a program.

5. Adjoints

The fifth dogma says:
To any canonical construction from one species of structure to another corresponds an
adjunction between the corresponding categories.

Although this can be seen as just a definition of 'canonical construction', it can be very
useful in practice. The essence of an adjoint is the universal property that is satisfied by its
value objects. This property says that there is a unique morphism satisfying certain
conditions. It is worth noting that any two (right, or left) adjoints to a given functor are
naturally equivalent, i.e. adjointness determines a construction uniquely up to isomorphism.

5.1. Products and sums. Many of the constructions described above are intuitively
canonical, and hence are adjoints. For example, binary products in a category # give
a functor n:tf x<&^<#, which is left adjoint to A:<*f-vtfxtf, the 'diagonal' functor,
sending an object C in <& to the pair (C, C), and sending a morphism c: C-> C" in <€ to
(c,c):(C,C)^(C'tC) in tfx<<?. Moreover, <<? has coproducts (also called 'sums') iff A
has a right adjoint. This beautifully simple way to formalise two mathematical concepts
of basic importance is due to MacLane (1948), and extends to general limits and colimits.

5.2. Freebies. Another beautifully simple formalisation gives a general definition of 'free'
constructions: they are the left adjoints of forgetful functors. For example, the path
category functor Pa: Graph-* Cat of example 2.6 is left adjoint to the forgetful functor
Cat -> Graph, and thus may be said to give the free category over a graph.

5.3. Minimal realisation. An automaton (X,St Y,f,g) is reachable iff its function/: X*-*S
is surjective. Let sf denote the subcategory of Aut whose objects are reachable and whose
morphisms (ij,k) have /surjective. Then the restriction B:sJ->Beh of B: Aut -+• Belt to sJ
has a right adjoint which gives the minimal realisation of a behaviour (Goguen, 1973).

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

J. A. Goguen 60

Because right adjoints are uniquely determined, this provides a convenient abstract
characterisation of minimal realisation. Moreover, this characterisation extends to, and
even suggests, more general minimal realisation situations, e.g. see Goguen (1972).

5.4. Syntax and semantics. One of the more spectacular adjoints is that between syntax
and semantics for algebraic theories, again due to Lawvere in his thesis; see Lawvere
(1963).

5.5. Cartesian closed categories. A Cartesian closed category has binary products, and a
right adjoint to each functor sending A to A x B. It is remarkable that this concept turns
out to be essentially the (typed) A-calculus; see Lambeck and Scott (1986). This connection
has been used, for example, as a basis for the efficient compilation of higher-order
functional languages (Curien, 1986). An advantage is that optimisation techniques can be
proved correct by using purely equational reasoning.

5.6. Kleisli categories. Another way to generalise Lawvere theories is to view an arbitrary
adjunction as a kind of theory. So-called monads (also called triples) are an abstraction of
the necessary structure, and the Kleisli category over a monad gives the category of free
algebras (MacLane, 1971). Again, there are surprisingly many examples. Goguen (1989)
shows how a Kleisli category generates a generalised Lawvere theory, and then shows that
many different problems of unification (that is, of solving systems of equations) can be
naturally formulated as finding equalisers in Kleisli categories. Examples include unification
in order sorted and continuous theories. Moggi (1988) uses Kleisli categories to get an
abstract notion of Computation' which gives rise to many interesting generalisations of the
A-calculus.

6. Colimits

The sixth dogma says:
Given a species of structure, say widgets, then the result of interconnecting a system of
widgets to form a super-widget corresponds to taking the colimit of the diagram of widgets
in which the morphisms show how they are interconnected.

At least for me, this intuition arose in the context of General Systems Theory (Goguen,
1972; Goguen and Ginali, 1978). It may be interesting to note that the duality between the
categorical definitions of limits and colimits suggests a similar duality between the intuitive
notions of solution and interconnection.

6.1. Putting theories together to make specifications. Complexity is a fundamental
problem in programming methodology: large programs, and their large specifications, are
very difficult to produce, to understand, to get right, and to modify. A basic strategy for
defeating complexity is to break large systems into smaller pieces that can be understood
separately, and that when put back together give the original system. If successful, this in

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

A categorical manifesto 61

effect 'takes the logarithm' of the complexity. In the semantics of Clear (Burstall and
Goguen, 1977, 1980), specifications are represented by theories, in essentially the same
sense as Lawvere (but many-sorted, and with signatures), and specifications are put
together by colimits in the category of such theories. More specifically, the application of
a generic theory to an actual is computed by a pushout. OBJ (Futatsugi et al., 1985, 1987;
Goguen et al., 1988), Eqlog (Goguen and Meseguer, 1987a), and FOOPS (Goguen and
Meseguer, 1987b) extend this notion of generic module to functional, logic (i.e. relational),
and object oriented programming, and in their combinations. It has even been applied to
Ada (Goguen, 1986; Tracz, 1990).

6.2. Graph rewriting. Another important problem in computing science is to find models
of computation that are suitable for massively parallel machines. A successful model should
be abstract enough to avoid the implementation details of particular machines, and yet
concrete enough to serve as an intermediate target language for compilers. Graph rewriting
provides one promising area within which to search for such models (Keller and Fasel,
1987; Goguen and Meseguer, 1988; Glauert et al, 1988; Hoffmann and Plump, 1988), and
colimits seem to be quite useful here (Ehrig, 1979; Raoult, 1984; Kennaway, 1987). Graph
rewriting is also important for the unification grammars that are now popular in linguistics
(Shieber, 1986; Goguen, 1989). There seem to be many opportunities for further research
in these areas.

6.3. Initiality. The simplest possible diagram is the empty diagram. Its colimit is an initial
object, which is more simply explained as an object that has a unique morphism to any
object. Like any adjoint, it is determined uniquely up to isomorphism, so any two initial
objects in a category are isomorphic (of course, this can also be shown directly); hence,
initiality gives a convenient way to define entities 'abstractly'. It is also worth mentioning
that universality can be reduced to initiality (in a comma category), and hence so can
colimits.

6.4. Initial model semantics. It seems remarkable that initiality is so very useful in
computing science. Beginning with the formalisation of abstract syntax as an initial algebra
(Goguen, 1974), initiality has been applied to an increasing range of fundamental concepts,
including induction and recursion (Goguen et al., 1977; Meseguer and Goguen, 1985),
abstract data types (Goguen et al., 1978), domain equations (see below), computability
(Meseguer and Goguen, 1985), and model theoretic semantics for functional (Futatsugi
et al., 1985), logic (i.e. relational), combined functional and relational, and constraint logic
(Goguen and Meseguer, 1987) programming languages. The latter is interesting because it
involves initiality in a category of model extensions, i.e. of morphisms, rather than just
models. In general, this research can be seen as formalising, generalising, and smoothing
out the classical Herbrand Universe construction (Herbrand, 1930), and it seems likely that
much more interesting work can be done along these lines.

6.5. Solving domain equations. Scott (1972) presents an 'inverse limit' construction for
solving domain equations, and records some suggestions by Lawvere that clarify this

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

J. A. Goguen 62

construction by viewing it as a colimit in an associated category of retracts. These ideas are
taken further in (Smyth and Plotkin, 1982), which also generalises from partial orders to
categories and shows that least fixpoints are initial algebras, among other things. A key
construction is the colimit of an infinite sequence of morphisms, generalising the traditional
construction HneuF

n(l) of a least fixpoint.

7. Common categories

The seventh dogma says:
Given a species of structue (€, then a species of structure obtained by 'decorating' or
'enriching' that ofW corresponds to a comma category under <£ (or under a functor from

It seems more difficult to be precise about this intuition than the others, but hopefully some
examples will help to clarify things. The following are just a few of the many examples that
can be found in computing science:

7.1. Graphs. Many categories of graph are comma categories. For example, if 2x
denotes the functor Set -> Set sending S to SxS, then the category Graph of example 1.3
is the comma category

7.2. Labelled graphs. Given some category & of graphs and a forgetful functor
<%:&-> Set, say giving the node set of graphs in &, and given a set L to be used for node
labels, then the comma category {$1 \ L) is the category of graphs from 0 with nodes labelled
by L. In the same way, we can decorate edges of graphs, or branches of trees.

7.3. Theories. If FPCat is the category of categories with finite products, with finite
product-preserving functors as morphisms, and if &~ is a type system (i.e. an object in
FPCat), then the category of theories over 3T is (ST \ FPCat).

Comma categories are another basic construction that first appeared in Lawvere's thesis.
They tend to arise when morphisms are used as objects. Viewing a category as a comma
category also makes available some general results to prove the existence of limits and
colimits (Goguen and Burstall, 1984a).

8. Further topics

Although they are particularly fundamental, the seven dogmas given above far from
exhaust the richness of category theory. This section mentions some further categorical
constructions, about each of which one might express surprise at how many examples there
are in computing science.

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

A categorical manifesto 63

8.1. 2-categories. Sometimes morphisms not only have their usual composition, identity,
source and target, but also serve as objects for some other, higher-level, morphisms. This
leads to 2-categories, of which the category Cat of categories is the canonical example, with
natural transformations as morphisms of its morphisms. This concept was mentioned in
example 2.7, and is also used by Goguen and Burstall (1980, 1984), Hoare and He (1988)
and Moggi (1989), among other places, and is mentioned in Smyth and Plotkin (1982).

8.2. Monoidal categories. There are many cases where a category has a natural notion of
multiplication that is not the usual Cartesian product but nevertheless enjoys many of the
same properties. The category of Petri nets studied in Meseguer and Montanari (1988) has
already been mentioned, and a variety of recent work suggests that monoidal categories
may be broadly useful in understanding the relationships among the various theories of
concurrency, e.g. see Ferrari (1990).

8.3. Indexed categories. A strict indexed category is just a functor 38op -> Cat. Tarlecki et al.
(1990) and Goguen (1989) give many examples of indexed categories in computing science,
and Tracz (1990) gives some general theorems, including simple sufficient conditions for
completeness of the associated * Grothendieck * category. Moggi (1989) applies indexed
categories to programming languages, and in particular shows how to get a kind of higher
order module facility for languages like ML. (Non-strict indexed categories are significantly
more complex, and have been used in foundational studies (Pare and Johnstone, 1988).)

8.5. Topoi. A profound generalisation of the idea that a theory is a category appears in
the topos notion developed by Lawvere, Tierney, and others. In a sense, this notion
captures the essence of set theory. It also has surprising relationships to algebraic geometry,
computing science, and intuitionistic logic (Goldblatt, 1979; Barr and Wells, 1984; Hyland,
1982).

9. Discussion

The traditional view of foundations requires giving a system of axioms, preferably first
order, that assert the existence of certain primitive objects with certain properties, and of
certain primitive constructions on objects, such that all objects of interest can be
constructed, and all their relevant properties derived, within the system. The axioms should
be as self-evident, as few in number, and as simple, as possible, in order to nurture belief
in their consistency, and to make them as easy to use as possible. This approach is inspired
by the classical Greek account of plane geometry.

The best known foundation for mathematics is set theory, which has been very successful
at constructing the objects of greatest interest in mathematics. It has, however, failed to
provide a commonly agreed upon set of simple, self-evident axioms. For example, classical
formulations of set theory (such as Zermello-Frankel) have been under vigorous attack by
intuitionists for nearly eighty years. More recently, there has been debate about whether the
Generalised Continuum Hypothesis is 'true', following the originally startling proof (by
Paul Cohen) that it is independent of other, more widely accepted axioms of set theory. Still

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

/ . A. Goguen 64

more recently, there has been debate about the Axiom of Foundation, which asserts that
there is no infinite sequence of sets Slt S2, S3i... such that each Si+1 is an element of St. In
fact, Aczcl (1988) and others have used an ^//-Foundation Axiom, which positively
asserts the existence of such non-well founded sets, to model various phenomena in
computation, including communicating processes in the sense of Milner (1980). I think it
is fair to say that most mathematicians no longer believe in the heroic ideal of a single
generally accepted foundation for mathematics, and that many no longer believe in the
possibility of finding 'unshakable certainties' (Brouwer, 1967) upon which to found all of
mathematics.

Set theoretic foundations have also failed to provide fully satisfying accounts of
mathematical practice in certain areas, including category theory itself, and moreover have
encouraged research into areas that have little or nothing to do with mathematical practice,
such as large cardinals. (MacLane (1988) gives a lively discussion of these issues; see also
Hatcher (1982) for an overview of various approaches to foundations.) In any case,
attempts to find a minimal set of least debatable concepts upon which to erect mathematics
have little direct relevance to computing science. Of course, the issue no longer seems as
urgent as it once did, because no new paradoxes have been discovered for a long time.

This paper has tried to show that category theory provides a number of broadly useful,
and yet surprisingly specific, guidelines for organising, generalising, and discovering
analogies among and within various branches of mathematics and its applications. I wish
to suggest that the existence of such guidelines can be seen to support an alternative, more
pragmatic view:

Foundations should provide general concepts and tools that reveal the structures and
interrelations of various areas of mathematics and its applications, and that help in doing
and using mathematics.

In a field which is not yet very well developed, such as computing science, where it often
seems that getting the definitions right is the hardest task, foundations in this sense can be
very useful, because they can suggest which research directions may be fruitful, using
relatively explicit measures of elegance and coherence. The successful use of category
theory for such purposes suggests that it provides at least the beginnings of such a
foundation.

References

Aczel, P. (1988) Non-well-founded Sets. Center for the Study of Language and Information, Stanford
University, CSLI Lecture Notes, Vol. 14.

Barr, M. and Wells, C. (1984) Toposes, Triples and Theories, Grundlehren der mathematischen
Wissenschafter, Vol. 278, Springer.

(1988) The formal description of data types using sketches. In: Michael Main, A. Melton,
Michael Mislove and D. Schmidt, eds, Mathematical Foundations of Programming Language
Semantics. Springer Lecture Notes in Computer Science 298.

Brouwer, L. E. J. (1928) Intuitionistischc bctrachtungen fiber den formalismus. Koninklijke Akademie
van wetenschappen te Amsterdam, Proc. Section of Sciences 31 374-9. In: From Frege to Godel, ed.
Jean van Hcijcnort, Harvard University Press, 1967, pp. 490-2.

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

A categorical manifesto 65

Burstall, R. (1972) An algebraic description of programs with assertions, verification, and simulation.
In: J. Mack Adams, John Johnston and Richard Stark, eds, Proc. Conference on Proving Assertions
about Programs, Association for Computing Machinery, pp. 7-14.

Burstall, R. and Goguen, J. (1977) Putting theories together to make specifications. In: Raj Reddy,
ed., Proc. Fifth Int. Joint Conf. on Artificial Intelligence, Department of Computer Science,
Carnegie-Mellon University, pp. 1045-58.

(1980) The semantics of Clear, a specification language. In: Dines Bjorner, ed., Proc. 1979
Copenhagen Winter School on Abstract Software Specification, Springer Lecture Notes in Computer
Science 86 pp. 292-332. Based on unpublished notes handed out at the Symposium on Algebra and
Applications, Stefan Banach Center, Warsaw, Poland.

Curien, P.-L. (1986) Categorical Combinators, Sequential Algorithms, and Functional Programming,
Pitman and Wiley. Research Notes in Theoretical Computer Science.

Ehrich, H.-D. (1982) On the theory of specification, implementation and parameterization of abstract
data types. J. Assoc. Comput. Mach. 29 206-27.

Ehrig, H. (1979) Introduction to the algebraic theory of graph grammars. In: V. Claus, Hartmut
Ehrig and Gregor Rozenberg, eds, Graph Gramars and their Application to Computer Science and
Biology, Springer Lecture Notes in Computer Science 73 pp. 1-69.

Eilenberg, S. and MacLane, S. (1945) General theory of natural equivalences. Trans. Amer. Math.
Soc. 58 231-94.

Ferrari, G. L. (1990) Unifying models of concurrency. PhD thesis, University of Pisa.
Futatsugi, K., Goguen, J., Jouannaud, J.-P. and Meseguer, J. (1985) Principles of OBJ2. In: Brian

Reid, ed., Proc. Twelfth ACM Symp. on Principles of Programming Languages, Association for
Computing Machinery, pp. 52-66.

Futatsugi, K., Goguen, J., Meseguer, J. and Okada, K. (1987) Parameterized programming in OBJ2.
In: Robert Balzer, ed., Proc. Ninth Int. Conf. on Software Engineering, IEEE Computer Society
Press, pp. 51-60.

Glauert, J. R. W., Hammond, K., Kennaway, J. R., Papadopoulos, G. A. and Sleep, M. R. (1988)
DACTL: Some introductory papers. Technical Report SYS-C88-08, School of Information
Systems, University of East Anglia.

Goguen, J. (1971) Mathematical representation of hierarchically organized systems. In: E. Attinger,
ed., Global Systems Dynamics, S. Karger, pp. 112-28.

(1972) Minimal realization of machines in closed categories. Bull. Amer. Math. Soc. 78(5)
777-83.

(1973) Realization is universal. Math. Sys. Theory 6 359-74.
(1974) On homomorphisms, correctness, termination, unfoldments and equivalence of flow

diagram programs. J. Comput. Sys. Sci. 8 333-65. Original version in: Proc. 1972 IEEE Symp. on
Switching and Automata, pp. 52-60; contains an additional section on program schemes.

(1975) Semantics of computation. In: Ernest G. Manes, ed., Proc. First Int. Symp. on Category
Theory Applied to Computation and Control, University of Massachusetts at Amherst, pp. 234-49.
Also in Springer Lecture Notes in Computer Science 25 151-63.

(1986) Reusing and interconnecting software components. Computer 19(2) 16-28. Reprinted in
Tutorial: Software Reusability, Peter Freeman, ed., IEEE Computer Society Press, 1987, pp.
251-63.

(1988) What is unification? A categorical view of substitution, equation and solution. In:
Maurice Nivat and Hassan ATt-Kaci, eds, Resolution of Equations in Algebraic Structures, Vol. 1:
Algebraic Techniques, Academic Press, pp. 217-61. Also Technical Report SRI-CSL-88-2R2, SRI
International, Computer Science Laboratory.

3 MSC I

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

J. A. Goguen 66

(1990) Types as theories. To appear in: Proc. Symp. on General Topology and Applications,
Oxford, June 1989, Oxford University Press.

Goguen, J. and Burstall, R. (1980) CAT, a system for the structured elaboration of correct programs
from structured specifications. Technical Report CSL-118, SRI Computer Science Laboratory.

(1984a) Some fundamental algebraic tools for the semantics of computation, part 1: Comma
categories, colimits, signatures and theories. Theoret. Comput. Sci. 31(2) 175-209.

(1984b) Some fundamental algebraic tools for the semantics of computation, part 2: Signed and
abstract theories. Theoret. Comput. Sci. 31(3) 263-95.

Goguen, J. and Ginali, S. (1978) A categorical approach to general systems theory. In: George Klir,
cd., Applied General Systems Research, Plenum, pp. 257-70.

Goguen, J., Kirchner, C , Kirchner, H., Megrelis, A. and Meseguer, J. (1988) An introduction to
OBJ3. In: Jean-Pierre Jouannaud and Stephane Kaplan, eds, Proc. Conf. on Conditional Term
Rewriting, Springer Lecture Notes in Computer Science 308 pp. 258-63.

Goguen, J. and Meseguer, J. (1983) Correctness of recursive parallel non-deterministic flow
programs. J. Comput. Sys. Sci. 27(2) 268-90. Earlier version in Proc. Conf. on Mathematical
Foundations of Computer Science, 1977, Springer Lecture Notes in Computer Science 53 pp. 580-95.

(1987a) Models and equality for logical programming. In: Hartmut Ehrig, Giorgio Levi, Robert
Kowalski and Ugo Montanari, eds, Proc. 1987 TAPSOFT, Springer Lecture Notes in Computer
Science 250 pp. 1-22.

(1987b) Unifying functional, object-oriented and relational programming, with logical
semantics. In: Bruce Shriver and Peter Wegner, eds, Research Directions in Object-Oriented
Programming, MIT Press, pp. 417-77. Preliminary version in SIGPLAN Notices 21(10) 153-62.

(1988) Software for the rewrite rule machine. In: Proc. Int. Conf. on Fifth Generation Computer
Systems 1988, Institute for New Generation Computer Technology (ICOT), pp. 628-37.

Goguen, J., Thatcher, J. and Wagner, E. (1976) An initial algebra approach to the specification,
correctness and implementation of abstract data types. Technical Report RC 6487, IBM T. J.
Watson Research Center. In: Current Trends in Programming Methodology, IV, Raymond Yeh,
ed., Prentice-Hall, pp. 80-149.

Goguen, J., Thatcher, J., Wagner, E. and Wright, J. (1973) A junction between computer science and
category theory, I: Basic concepts and examples (part 1). Technical Report, IBM Watson Research
Center, Yorktown Heights, NY. Research Report RC 4526.

(1977) Initial algebra semantics and continuous algebras. J. Assoc. Comput. Machinery 24(1)
68-95. An early version appears as 'Initial Algebra Semantics', with James Thatcher, IBM T. J.
Watson Research Center Report RC 4865, May 1974.

Goldblatt, R. (1979) Topoi, the Categorial Analysis of Logic, North-Holland.
Hatcher, W. S. (1982) The Logical Foundations of Mathematics, Pergamon.
Herbrand, J. (1930) Recherches sur la theorie de la demonstration. Travaux de la Societedes Sciences

et des Lettres de Varsovie, Classe 77/33(128).
Hcrrlich, H. and Strecker, G. (1973) Category Theory. Allyn and Bacon.
Hoarc, C. A. E. and He, J. (1988) Natural transformations and data refinement. Programming

Research Group, Oxford University.
Hoffmann, B. and Plump, D. (1988) Jungle evaluation for efficient term rewriting. Technical Report

4/88, Fachbcrcich Mathcmatik und Informatik, Universitat Bremen.
Hyland, M. (1982) The effective topos. In: A. S. Troclstra and van Dalen, eds, The Brouwer

Symposium, North-Holland.
Keller, R. and Fasel, J., eds (1987) Proc. Graph Reduction Workshop, Springer Lecture Notes in

Computer Science, 279.

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

A categorical manifesto 67

Kennaway, R. (1987) On 'On graph rewritings'. Theoret. Comput. Sci. 52 37-58.
Lambek, J. and Scott, P. (1986) Introduction to Higher Order Categorical Logic. Cambridge Studies

in Advanced Mathematics, Volume 7, Cambridge University Press.
MacLane, S. (1948) Duality for groups. Proc. Nat. Acad. Sci. USA 34 263-7.

(1971) Categories for the Working Mathematician, Springer.
(1988) To the greater health of mathematics. Math. Intelligencer 10(3) 17-20. See also Math.

Inteligencer 5(4) (1983) 53-5.
Lawvere, F. W. (1963) Functorial semantics of algebraic theories. Proc. Nat. Acad. Sci. USA 50

869-72. Summary of PhD Thesis, Columbia University.
Maturana, H. and Varela, F. (1987) The Tree of Knowledge, Shambhala.
Meseguer, J. and Goguen, J. (1985) Initiality, induction and computability. In: M. Nivat and J.

Reynolds, eds, Algebraic Methods in Semantics. Cambridge University Press, pp. 459-541.
Meseguer, J. and Montanari, U. (1988) Petri nets are monoids: A new algebraic foundation for net

theory. In: Proc. Symp. on Logic in Computer Science, IEEE. Full version in Technical Report SRI-
CSL-88-3, Computer Science Laboratory, SRI International, January 1988; Informat. Computat.
Submitted.

Milner, R. (1971) An algebraic definition of simulation between programs. Technical Report CS-205,
Stanford University, Computer Science Department.

(1980) A Calculus of Communicating Systems, Springer Lecture Notes in Computer Science, 92.
Moggi, E. (1988) Computational lambda-calculus and monads. Technical Report ECS-LFCS-88-66,

Laboratory for Foundations of Computer Science, University of Edinburgh.
(1989) A category-theoretic account of program modules. Laboratory for Foundations of

Computer Science, University of Edinburgh.
Pare, R. and Johnstone, P. (1978) Indexed Categories and their Applications, Springer Lecture Notes

in Mathematics, 661.
Raoult, J. C. (1984) On graph rewritings. Theoret. Comput. Sci. 32 1-24.
Scott, D. (1972) Continuous lattices. In: Proc. Dalhousie Conf, Springer Lecture Notes in

Mathematics, 21 A, pp. 97-136.
Shieber, S. (1986) An Introduction to Unification-Based Approaches to Grammar, Center for the Study

of Language and Information.
Smyth, M. and Plotkin, G. (1982) The category-theoretic solution of recursive domain equations.

SI AM J. Comput. 11 761-83. Also Technical Report D.A.I. 60, University of Edinburgh,
Department of Artificial Intelligence, December 1978.

Tarlecki, A., Burstall, R. and Goguen, J. (1989) Some fundamental algebraic tools for the semantics
of computation, part 3: Indexed categories. Technical Report PRG-77, Programming Research
Group, Oxford University. Theoret. Comput. Sci. to appear.

Tracz, W. J. (1990) Formal specification of parameterized programs in LILLEANNA. PhD thesis,
Stanford University, to appear.

Whitehead, A. N. (1969) Process and Reality, Free Press.

3-2

https://doi.org/10.1017/S0960129500000050 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500000050

