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Abstract

A type theory gives rise to a threefold per-
spective on computer programs: As a pro-
gram or algebra, as a type, and as cate-
gories. By enforcing a type system onto
quantum programs, error checking can be
done more easily at compile time, avoiding
the probabilistic nature of quantum mea-
surement and run-time verification. How-
ever, classical homotopy type theory fails to
account for quantum mechanics such as no-
cloning. We explore linear dependent type
theory, how it deals with quantum mechan-
ics such as no-cloning, and its implications
to quantum complexity. We then discuss
alternatives and extensions to linear depen-
dent type theory for the foundation of quan-
tum programming languages.

1 Introduction

We begin by giving relevant definitions in type
theory, with the intention of building up relatively
self-contained rigor for proofs in Section 2, where
we prove the relationship between various type
theories and quantum mechanics, particularly the
no-cloning theorem. Section 3 then reviews alter-
natives to linear dependent type theory for the
basis of quantum computation.

1.1 Introducing Type Theory (TT)

Type Theory (TT) presents an alternative foun-
dation to mathematics compared to Set Theory
(ST). The key difference is that TT presents syn-
tactic information while ST presents it semanti-

cally 1 [22]. We attribute all the following def-
initions to [22]. In TT, a value a of type A is
denoted a : A. Define U0 as a universe of types,
such that A : U0. In order to prevent Russell’s
paradox as with sets, we define an infinite series
of type universes such that

U0 : U1 : U2 : U3 : · · · (1)

and say that a type A : U if we have A : Ui

for some i ∈ N ∪ {0}. Mappings between types,
such as A → B for types A,B are types as well.
Implications are denoted using ⊢, such as

x : N ⊢ (x+ 1) : N (2)

which says if x is of type natural number, then
x + 1 is as well. In TT, N is defined similarly
to in ST. Namely, define the base 0 : N and a
successor function succ : N → N. Therefore all
natural numbers besides 0 can be defined as

1 ≡ succ(0) (3)

2 ≡ succ(succ(0)) (4)

· · · (5)

We can also create tuples of types (A,B) such
that (a, b) : (A,B). Indeed, other structures for
combining types such as

A⊗B,
∑

A,
∏

A, A×B, . . . (6)

can be defined and much structure can be gained
this way. We say these augment or extend the
type theory. However, as we will see we need
to be careful about what we augment the basic
TT with, since sometimes excluding these struc-
tures (or redefining them) can lead to a TT better
suited for our purposes, namely computing.

1We use Church’s TT, not Curry’s. See [22].
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1.2 Classical Motivation for TT

Type theory was largely developed to aid the ver-
ification or proof of computer programs [4]. An
informal example of this, for instance, would be a
compiler of a strongly typed language that checks
if the outputs of a function are all the same type,
and errors otherwise. More formally, one can de-
note logical propositions as types.

We first begin by specifying a key difference
between saying s ∈ S in ST and a : A in TT.
The complete proof and list of properties is out
of scope (see [11]), but the key property we need
is that ∈ can be undecidable, but a is decidable
2 [11]. This is because to show s ∈ S requires a
proof, but a : A is a proof in itself in the following
sense:

Let A denote the proposition ”A Quantum
Computer exists.” Then a statement a witness-
ing ”UCSD has a quantum computer” proves A.
More generally, base type theory has a correspon-
dence to ”intuitionistic” logic: types A are propo-
sitions, a : A are proofs, and A → B corresponds
to A ⇒ B. For more correspondences, see 1.5.

1.3 Dependent Type Theory (DTT)

Dependent Type Theory (DTT) augments TT
with types that can depend on values of other
types, rather than just the types themselves [22].
This removes the distinction between values and
types in TT. For example, given

A
B−→ U (7)

define values of a dependent pair type

(a, b) :
∑
x:A

B(x) (8)

where a : A and b : B(x). We can think of B
as a map from values of A to values3 of other
types in U. We can correspondingly define Pr1 :∑

x:AB(x) → A that maps values of types B(x) :
U to values a : A4.

2There are type systems with undecidable :, such as the
Curry variant of system F, but we do not focus on such
systems here. See [11].

3Note these values can be types themselves due to DTT.
4Pr1 is the standard notation.

Suppose we know that (a, b) :
∑

x:AB(x).
Therefore, we have a value a : A with corresond-
ing B(a) : U. In terms of logic, this means that
there exists a value a such that B(a) also is de-
fined. Continuing the example in 1.2, B(x) can
map from universities to the quantum computers
(QC) they have, so∑

x:A

B(x) ≡ ”A univ. has QC” (9)

(a, b) ≡ (”UCSD”,”UCSD has QC) (10)

would prove
∑

x:AB(x). That is,
∑

x:AB(x) cor-
responds to the proposition ∃(x : A).B(x) 5. In-
deed, if B(x) is constant we have∑

x:A

B ≡ A×B (11)

Furthermore,
∏

x:AB(x) corresponds to ∀(x :
A).B(x). In other words, providing a value for
such a type proves B(x) for all x : A. Continuning
the previous example

((”UCSD”,”UT”), (12)

(”UCSD has QC”,”UT has QC”)) :
∏
x:A

B(x)

assuming A only has these two values proves the
proposition ”All universities in A have a QC.”
Indeed, if B(x) is constant we have∏

x:A

B ≡ A → B (13)

because each a : A corresponds to a b : B.

1.4 Homotopy Type Theory (HoTT)

Homotopy Type Theory (HoTT) further aug-
ments DTT with a topological perspective, which
is particularly important when looking its homo-
topical definition of identity [22]. We begin by
defining DTT in its most rigorous form. A con-
text Γ is a list of the form

x1 : A1, x2 : A2, . . . , xn : An

5We use the lambda calculus notation here, instead of
the usual set notation, to further distinguish TT and ST.
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defines variables of different types. Let . be the
empty context. This gives rise to judgments,
which derive statements as seen in Table 1

Judgment Meaning

Γ ctx Γ is a well-formed context.
Γ ⊢ a : A Given Γ, term a has type A.
Γ ⊢ a ≡ a′ : A Given Γ, a, a′ equal by def

Table 1: (Some) Judgments in HoTT

Here, a well-formed context means that it is
proven. Namely, no type in a well-formed context
can be empty. Given these judgments, we use
inference rules to derive further judgments using
the notation

Γ1, . . . ,Γn
Inference Name

Γ

There are many inference rules6, but we summa-
rize the ones necessary for us below. First we have
the initialization of an empty context:

ctx EMP. ctx

We also have the initialization of type universes:

Γ ctx U Intro
Γ ⊢ Ui : Ui+1

Γ ⊢ A : Ui U Cummul
Γ ⊢ A : Ui+1

We also have the ability to introduce a value of a
new type, given that type is a value of some type
universe:

x1 : A1, . . . , xn−1 : An−1 ⊢ An : U
ctx EXT

x1 : A1, . . . , xn−1 : An−1, xn : An ctx

We then have the ability to initialize variables
from types

x1 : A1, . . . , xn : An ctx
Vble (1 ≤ i ≤ n)

xi : Ai ctx

We can also weaken, which replaces A : U with
a : A, since a is a ”proof” of A:

Γ ⊢ A : U Γ,∆ ⊢ b : B
wkg

Γ, x : A,∆ ⊢ b : B
6There are many more inference rules than there are

modus ponens in logic, but they are similar.

We can also substitute. For instance, given a
statement using x : A in the RHS, replace all
instances of x with a as denoted by [a/x]:

Γ ⊢ a : A Γ, x : A,∆ ⊢ b : B
Subst

Γ,∆[a/x] ⊢ b[a/x] : B[a/x]

This gives rise to a formal definition of ≡.

Γ ⊢ a : A
def

Γ ⊢ a ≡ a : A

We have ≡ have the following inferences:

Γ ⊢ a ≡ b : A
Γ ⊢ a : A

Γ ⊢ a ≡ b : A
Γ ⊢ b ≡ a : A

Γ ⊢ a ≡ b : A Γ ⊢ b ≡ c : A
Γ ⊢ a ≡ c : A

Γ ⊢ a : A Γ ⊢ A ≡ B : U
Γ ⊢ a : B

Γ ⊢ a ≡ b : A Γ ⊢ A ≡ B : U
Γ ⊢ a ≡ b : B

These allow us to formally introduce the topo-
logical value of HoTT7. Consider types as topo-
logical spaces, values as points, and maps between
values as paths between values in the space. Then

Γ ⊢ A : U Γ ⊢ a : A Γ ⊢ b : A
Γ ⊢ a ≡A b : U

says that a and b are homotopically equivalent
under A, denoted a ≡A b, if there exists a path
a → b and b → a in A. To define this more con-
retely, we need a homotopical definition of idenity,
given as refl defined

Γ ⊢ A : U Γ ⊢ a : A
Γ ⊢ refla : a ≡A a

Visually, refla is a the path a → a in A:

A

a refla

Figure 1: refla

7Note that this enforces a necessary topological struc-
ture on types, something ST does not enforce with sets.
See FREEDMAN or WANG.
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Then for a type family of paths P : A → U and
f, g :

∏
x:A P (x), define a homotopy from f to g

denoted f ∼ g as a dependent function of type

(f ∼ g) :≡
∏
x:A

(f(x) = g(x)) (14)

Note that this is defined up to equivalences. As we
will see, these paths can be different yet equivalent
up to homotopy.

Given f : A → B, we then have a ”type of
proof” to show the equivalence of f in the type8

isequiv(f) :≡ (15)

(
∑

g:B→A(f ◦ g ∼ idB))× (
∑

h:B→A(h ◦ f ∼ idA))

where ◦ is the usual composition. This is much
clearer visually, where A is a disc and A′ is a torus
topologically:

A A′

a b a′ b′

f

g

f ′

g′

Figure 2: f ∼ g and f ′ ̸∼ g′

This gives us a new alternative definition for
the equivalence of types:

(A ≃ B) :≡
∑

f :A→B

isequiv(f) (16)

such that two types are equivalent if all their
paths are equivalent. Thus in Figure 2 A ̸≃ A′.

This finally allows us to deifne the fundamental
axioms of HoTT (which we will show contradict
if we attempt to enforce no-cloning in Section 2).
First, let f, g :

∏
x:AB(x) with B : A → U. Then

there exists

happly : (f = g) →
∏
x:A

(f(x) =B(x) g(x)) (17)

which basically states that two paths are equal if
they are pointwise equal in the topological per-
spective. The Fundamental Existentionality Ax-
iom (FEA) states that there exists

funext :
∏
x:A

(f(x) =B(x) g(x)) → (f = g) (18)

8Here we use id instead of refl. These are different but
we can gloss over this.

along with homotopies α, β such that

(funext, α, funext, β) : isequiv(happly). (19)

This formally defines a correspondence between
equal paths as paths that are pointwise equal. So
in Figure 2, though f ∼ g, f ̸= g. Furthermore,
the Univalence Axiom (UA) states that there ex-
ists

idhequiv : (A =U B) → (A ≃ B) (20)

which is a correspondence between equals and
equivalence, such that there exists a map of the
opposite direction

ua : (A ≃ B) → (A =U B) (21)

along with homotopies α′, β′ such that

(ua, α′,ua, β′) : isequiv(idhequiv). (22)

The UA essentially says that (A =U B) ≃ (A ≃
B). One way of thikning about the UA is to see
it as a definition of isomorphisms in HoTT.

1.5 Computational Trinitarianism

In the previous sections, we have attemped to pro-
vide a rigorous buildup to HoTT. At the same
time, we see how some concepts in HoTT are
much more easily presented (and proven) when
viewed from the lens of category theory or of
topology. Briefly, a category C consists of a set
of objects X ∈ C such that for any X,Y ∈ C,
then we have a set of morphisms (maps) dentoted
Hom(X,Y ) satisfying:

1. For all objects, there exists the identity mor-
phism 1X ∈ Hom(X,X).

2. For f : X → Y and g : Y → Z, there exists
composite morphism gf : X → Z.

3. Given morphisms h, g, f , (hg)f = h(gf).

Putting it all together, we come to the concept
of Computational Trinitarianism, summarized in
Figure 3. Essentially, Computational Trinitarian-
ism states that Category Theory, Type Theory,
and Logic / Algebra are all equivalent and in-
terchangeable perspectives on computation [22].
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This means that a proof in one is a proof in the
other two; we can choose what to use in proofs
without loss of generality. We will make exten-
sive use of this in Section 2.

Category Theory

Type Theory Logic

Types as Categories Categories as Propositions

Types as Propositions

Figure 3: Computational Trinitarianism

One can then create more specific trinitari-
anisms by further specifying one of the three the-
ories. For example:

Bicartesian Closed Categories

Simple Type Theory Intuitionistic Logic

Types as Categories Categories as Propositions

Types as Propositions

Figure 4: Simple TT Trinitarianism

Locally Compact Closed Categories

Dependent Type Theory Logic with ∀,∃

Types as Categories Categories as Propositions

Types as Propositions

Figure 5: Dependent TT Trinitarianism

Category Theory

Homotopy Type Theory Proof Theory

Types as Categories Categories as Propositions

Types as Propositions

Figure 6: Homotopy TT Trinitarianism

Algebra

Lambda Calculus Proof Verification

Types as Categories Categories as Propositions

Types as Propositions

Figure 7: Rephrased HoTT Trinitarianism

Recall that our goal is to present a type theory
that is well suited for Quantum Programs. By
computational trinitarianism, it sufficies to show
that in one of the above theories, enforcing quan-
tum mechanics leads to problems to show that
HoTT is not an appropriate type theory for Quan-
tum. Similarly, if we can show one some other TT
must be consistent with one of the theories, then
there must be a way to make it consistent with
all the theories!

2 A Quantum Type Theory

We seek a type theory that faithfully captures the
principles of quantum logic. A substructural logic
known as linear logic is considered the basis of
a quantum logic due its omission of the contrac-
tion rule and weakening rule, reflecting no-cloning
and no-deleting [10]. Linear type theory is then
the linear logic-version of type theory. We begin
by demonstrating why HoTT is insufficient as a
framework for quantum logic.

2.1 No-Deleting in HoTT

We offer two proofs for the incompatibility of
HoTT with quantum computing. The first comes
from contraction and no-deleting [10].

Proof. Type A is contractible if there is a : A
called the center of the contraction such that a =
x for all x : A. More formally,

isContr(A) :≡
∑
a:A

∏
x:A

(a = x) (23)

Contractibility is a necessary property of HoTT
since refl exists and therefore an identity must
exist. More concretely, a contractible type A → A
with a single element is the trivial solution to both
FEA and UA, and therefore must exist as long as
both axioms are enforced.

Lemma: If P : A → U is a type family such
that each P (a) is contractible, then∏

x:A

P (x) (24)

is contractible9.

Proof.
∏

x:A P (x) is a proposition, and it has a
single element of the form of a map that sends
every x : A to the center of contraction of P (x).
Therefore, this element witnesses that

∏
x:A P (x)

is contractible.

Lemma: For any A and any a : A,∑
x:A

(a = x) (25)

is contractible10.
9Lemma 3.11.6 in [22].

10Lemma 3.11.8 in [22].
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Proof. Choose the center to be (a, refla). Suppose
(x, p) :

∑
x:A(a = x). We show (x, p) = (a, refla).

It suffices to show q : a = x such that q(refla) = p,
that is they are equivalent. But just take q :≡ p
(which must exist since p).

Putting it all together, we have that any type
that has at least a single value, we can construct a
contractible type out of it (by the second Lemma).
Consider the type qubit, which has more than one
value. But then it is possible to contract this type
to one that has only a single value, losing infor-
mation in the process.

2.2 No-Cloning in HoTT

We claim no-cloning and Hott are incompatible
as seen in [10].

Proof. Any quantum system that uses qubits
must have a type to represent it. If the type qubit
exists, then it must have a value. But then one
can repeatedly apply U Intro, ctxETX, and Vble
to initialize multiple copies of the same qubit. We
can verify that these are the same qubit via ≡.
But then we can copy quantum information, since
any initialized qubit must have a type.

2.3 Linear Type Theory (LTT)

We use the definition outlined in [23]. In our con-
text Γ, we have

Γ := x1 : T1, . . . , xn : Tn. (26)

Our type system possesses unicity of type, which
means that for a given Γ and t there is at most
T satisfying Γ ⊢ t : T . Still, in conventional type
theories corresponding to intuitionistic logic, the
existence of the contraction rule allows us to use
a variable x : T arbitrarily many times. Thus,

x : T ⊢ () : ⊤ (27)

is valid though we never use the assumption, and

x : T ⊢ (x, x) : T × T (28)

is valid even if we use the assumption x : T twice.
A linear type system asserts that each assump-

tion is used exactly once, making the two typ-
ings described above illegal. This means we must

modify the inference rules from dependent type
theory. For example, the variable rule

Var
Γ, x : T ⊢ x : T

is illegal in LTT as we don’t use any assumptions
from Γ in the typing. We fix this by changing the
rule to

Var
x : T ⊢ x : T

so that the assumption x : T is used exactly once.
For brevity, we won’t go over the analogues of
the other inference rules, but the main point is
that linear type theory prevents duplication and
deletion of resources.

Although linear type theory and dependent
type theory each have well-defined syntaxes indi-
vidually, the precise syntax of a combined linear
dependent type theory is still under development.
However, since the categorical semantics for such
a type theory are already established, we will not
concern ourselves with this gap.

2.4 Categorial Semantics of a Linear De-
pendent Type Theory (LDTT)

Linear dependent type theory is precisely the
formal language for which symmetric closed
monoidal categories are the semantics [15]. A rig-
orous justification for this correspondence is out of
scope, but an intuitive explanation can be proved.

A symmetric monoidal category is a category
C equipped with a bifunctor

⊗ : C × C → C (29)

called the tensor product, and an object I, called
the unit object. There are natural isomorphisms
expressing associativity

aA,B,C : (A⊗B)⊗ C ≃ A⊗ (B ⊗ C), (30)

left and right unit laws

lA : I ⊗A ≃ A rA : A⊗ I ≃ A, (31)

and symmetry

σA,A : A⊗B ≃ B ⊗A. (32)
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These isomorphisms must satisfy coherence condi-
tions (namely, any diagram containing only a, l, r
must commute) that ensure all ways of regrouping
and reordering produce canonically isomorphic re-
sults.

A symmetric monoidal category is “closed” if,
for each object A, the functor − ⊗ A has a right
adjoint [A,−]. This structure provides a canoni-
cal way to talk about “linear functions” as objects
themselves, mirroring the linear function types in
the theory.

This alignment means that just as regular de-
pendent type theory is modeled by categories
that freely allow duplication and disposal of data
(cartesian closed categories), linear dependent
type theory is modeled by categories that en-
force strict accounting of resources (symmetric
monoidal closed categories).

2.5 No-Cloning in LDTT

We prove that no-cloning holds in LDTT by prov-
ing that it holds in a symmetric monoidal cat-
egory, following the proof of Theorem 11 in [1]
with some simplifications.

We begin by providing an axiomatic description
of cloning in this setting.

Let C and D be monoidal categories. A
monoidal functor (F, e,m) : C → D consists of
a functor F : C → D, an isomorphism e : I ≃ FI,
and a natural isomorphism mA,B : FA ⊗ FB →
F (A⊗B).

For monoidal functors (F, e,m), (G, e′,m′) :
C → D, a monoidal natural transformation is nat-
ural transformation t : F → G such that the fol-
lowing diagrams commute:

I FI

GI

e

e′
tI

FA⊗ FB F (A⊗B)

GA⊗GB G(A⊗B)

mA,B

tA⊗tB tA⊗B

m′
A,B

We then say that a monoidal category has

uniform cloning if it has a diagonal, which is a
monoidal transformation

∆A : A → A⊗A

such that ∆A is coassociative

A A⊗A A⊗ (A⊗A)

A A⊗A (A⊗A)⊗A

∆ 1⊗∆

aA,A,A

∆ ∆⊗1

and cocommutative

A A⊗A

A⊗A

∆

∆
σA,A

We will now prove the following:

Theorem 1. Let C be a compact closed cate-
gory with cloning. Then every endomorphism is
a scalar multiple of the identity; that is, for any
f : A → A, f = Tr(f) · a.

A compact closed category is a symmetric
monoidal category in which every object A has
a dual A∗, and a unit and counit

ηA : I → A∗ ⊗A ϵA : A⊗A∗ → I (33)

such that diagram

A A⊗ I A⊗ (A∗ ⊗A)

A I ⊗A (A⊗A∗)⊗A

r−1
A

1A

1A⊗ηA

aA,A∗,A

lA ϵA⊗1A

and the dual for A∗ commute. It is clear that

(ϵA ⊗ 1A) ◦ (1A ⊗ ηA) = 1A (34)

and

(1A∗ ⊗ ϵA) ◦ (ηA ⊗ 1A∗) = 1A. (35)

We start with the following lemma.

Lemma 2. Let u : I → A⊗B be a morphism in a
symmetric monoidal category with cloning. Then

u⊗ u = (3214)⊗ (u⊗ u).
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The proof of this fact follows from an uninter-
esting diagram chase.

Symbolically, this means that we can say

u⊗ u : I ⊗ I → (A⊗B)⊗ (A⊗B) (36)

is equivalent to

σ ◦ (u⊗ u) : I ⊗ I → A⊗ (A⊗B)⊗B (37)

This then gives us that for ηA : I → A∗ ⊗A,

ηA ⊗ ηA : I ⊗ I → (A∗ ⊗A)⊗ (A∗ ⊗A) (38)

is equal to

σ ◦ (ηA ⊗ ηA) : I ⊗ I → A∗ ⊗ (A∗ ⊗A)⊗A
(39)

We now have all we need to prove Theorem 1.

Proof. We prove this diagrammatically using
Penrose graphical notation. We write units as

A∗A

ηA : I → A∗ ⊗A

and counits as

AA∗

ϵA : A⊗A∗ → I

and the identities (34) and (35) as

=

and

=

Think of this as pulling the string diagram taut.
In general, when you can do this, there is an
equivalence.

Our result from lemma 2 has the diagram

=
AAA∗A∗ AA∗ AA∗

Now, consider the context

A

A∗ A

A

A∗

A

A

A

We then obtain

A

A

A

A

=

A

AA

A

and

A

A

A

A

=

A

AA

A

Then we have for any endomorphism f : A → A,

A

A

f
=

A

A

f
=

A

A

f

which implies f = Tr(f) · 1A.

Applying this result for the natural setting of
quantum computation, Vectk, gives us no-cloning
as it implies all linear maps within a vector space
are just scalar multiples of the identity, preventing
any non-trivial quantum operations.

3 QT for Quantum Computing

We have established that LDTT is a viable TT for
quantum computing. Here, we take a higher level
sketch of how LDTT may be useful for quantum
computing.
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3.1 Quantum Trinitarianism (QT)

Perhaps the most tangible benefit of a type theory
for computing is using it as a framework for proof
and program verification. In other words, we need
to specify what categories and logic correspond to
LDTT.

Locally Cartesian Closed Categories

LDTT Linear Logic

Types as Categories Categories as Propositions

Types as Propositions

Figure 8: Quantum Trinitarianism (QT)

We have already seen that symmetric monoidal
categories, or more precisely fibrations of sym-
metric monoidal categories or equivalently locally
cartesian closed categories (LCCC), correspond to
LDTT nicely. What takes the place of logic is Lin-
ear Logic, which though we do not define here,
essentially represent the logic governing quan-
tum systems. Note that circuit-description-based
quantum computing is a contender for replacing
linear logic, but pure quantum circuits lack a no-
tion of dependent types.

3.2 LDTT for Classical-Quantum

We take this opportunity to finally handle a very
important detail: Quantum systems are typically
classically controlled, where classical information
is not subject to no-cloning and other quantum
restrictions. This means that though LDTT is
a viable basis for the analysis, verification, and
construction of purely quantum algorithms, it has
limited practical benefit as it is too restrictive for
classical types.

However, what we learn from LDTT is quan-
tum trinitarianism, namely the interchangeability
of perspectives on a quantum program. Embed-
ding information from QT into HoTT based, clas-
sical systems therefore becomes a viable method
of analyzing, verifying, and constructing quantum
programs with classical control11. For a descrip-
tion of such a system, see the Appendix or [16].
Hence, we will shift into reviewing literature that
use some form of trinitarianism (or parts of it) for
quantum computing.

11Unfortunately, this is far beyond the scope of the pa-
per!

3.3 QT for Quantum Programming

We showed earlier that (traditional) Lambda Cal-
culus corresponds to HoTT in trinitarianism,
which by extension makes it unsuitable as a
computational model for quantum computation.
However, with some modifications, a lambda cal-
culus can be made for quantum programs: In [19],
Selinger and Valiron use TT to extend lambda cal-
culus with quantum types and operations. A key
highlight of their lambda calculus is the possibil-
ity of type safety and ease of development for a
type inference algorithm.

Furthermore, there is a large amount of work
into why a quantum programming language
should be typed. For a relatively thorough re-
view of these see [8]. An example of a language
that uses LDTT and is typed is Proto-Quipper-M
[10]. Proto-Quipper is linearly typed, preventing
no-cloning. Furthermore, it supports higher-order
functions and datatypes of qubits, such as lists,
and has built-in categorical semantics [10].

3.4 QT for Quantum Verification

A complete description for how to construct a
proof verifier from a TT is far beyond scope. How-
ever, we can show examples in the literature that
go through this process. A proof verifier essen-
tially takes a proof representation (which corre-
sponds to our quantum program via trinitarian-
ism) and verifies that it is properly constructed.
Classical methods are outlined in [6].

An empirical quantum verifier, however, faces
problems due to quantum collapse, randomness,
and no-cloning. Therefore, verification algorithms
will almost certainly have to be compile-time12.

In [21], Tan et. al. propose MorphQPV, which
utilizes the isomorphism structure of quantum
programs13 to create approximations for the out-
put of a program. They claimMorphQPV reduces
program executions by 107.9x and improves prob-
ability of success by around 3x against five bench-
marks [21].

An alternative approach is provided in [5],

12in the sense that running the program and measuring
is not suitable.

13isomorphisms as in the categorical sense, as seen in
quantum trinitarianism.
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where Bauer-Marquart et. al. propose a sym-
bolic execution system for quantum programs en-
tirely at compile time. They claim their symQV
improves on previous systems by an order of mag-
nitude, but will have to shift to approximation for
larger number of qubits to be feasible [5].

3.5 QT for Quantum Analysis

Similarly, many approaches have been proposed
for automatically determining (or approximating)
the complexity of quantum programs. For exam-
ple in [2], Avanzini et. al. propose the use of a
Probabilistic Abstract Reduction System (PARS)
based in linear logic in order to bound quantum
programs. In doing so, they prove the decidability
(though great complexity) of ”bounding weakest
pre-expectation on quantitative program proper-
ties of any mixed classical-quantum program” [2].

3.6 QT for Quantum Topology

Earlier we mentioned that HoTT brings with it
an enforcement of topological structure. Indeed,
enforcing a topological perspective into quantum
computation brings about some new ideas. For
example, in [24], Wang explores how topological
quantum computation can be used as a paradigm
for implementing large-scale quantum computing
through topological phases of matter [24]. The
report primarily focuses on the physics and the-
ory necessary, but interestingly trinitarianism re-
mains a key tool used14 [24]. See [9] for more.

3.7 An Alternative Hoare TT (HTT)

Though we have shown that LDTT is compati-
ble with quantum mechanics, it is far from the
only compatible LDTT15 In [20], Singhal proposes
Hoare Type Theory (HTT) grounded in Floyd-
Hoare logic as a means of abstracting programs.
At its core, HTT introduces special Hoare types
that can isolate a part of a program from the
rest of the language and specify their behavior.

14Wang proposes a sort-of trinitarianism between Quan-
tum Topology, Quantum Computing, and Quantum Me-
chanics in [24].

15though it is a very popular one, based on the research
we reviewed. See [10].

They propose additions to HTT to create Quan-
tum HTT (QHTT), which they then show is suit-
able for programming, type-checking, and verify-
ing quantum programs.

4 Conclusion

We have examined Linear Dependent Type The-
ory (LDTT) and its corresponding computational
trinitarianism, and why this fixes the problems
Homotopy Type Theory (HTT) faces with quan-
tum computation. We then review briefly litera-
ture who use similar techniques to advance a va-
riety of quantum disciplines. As such, we note
that Quantum Type Theory appears to be a new
and very active field16 and there is much to be
learned in all areas regrading Quantum Trinitar-
ianism and its applications.
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5 Appendix

Logic Set Theory (Internal Logic of) Category Theory Type Theory

Proposition Set Object Type
Predicate Family of sets Display morphism Dependent type
Proof Element Generalized element Term/Program
Cut rule Composition of classifying mor-

phisms / Pullback of display maps
Substitution

Introduction rule for im-
plication

Counit for hom-tensor adjunction Lambda

Elimination rule for impli-
cation

Unit for hom-tensor adjunction Application

Cut elimination for impli-
cation

One of the zigzag identities for hom-
tensor adjunction

Beta reduction

Identity elimination for
implication

The other zigzag identity for hom-
tensor adjunction

Eta conversion

True Singleton Terminal object/(-2)-truncated ob-
ject

H-level 0-type/Unit type

False Empty set Initial object Empty type
Proposition, truth value Subsingleton Subterminal object/(-1)-truncated

object
H-proposition, Mere proposition

Logical conjunction Cartesian product Product Product type
Disjunction Disjoint union (support of) Coproduct ((-1)-truncation of) Sum type (Bracket type of)
Implication Function set (into subsingleton) Internal hom (into subterminal ob-

ject)
Function type (into H-proposition)

Negation Function set into empty set Internal hom into initial object Function type into empty type
Universal quantification Indexed cartesian product (of fam-

ily of subsingletons)
Dependent product (of family of
subterminal objects)

Dependent product type (of family
of H-propositions)

Existential quantification Indexed disjoint union (support of) Dependent sum ((-1)-truncation of) Dependent sum type (Bracket type
of)

Logical equivalence Bijection set Object of isomorphisms Equivalence type
Support set Support object/(-1)-truncation Propositional truncation/Bracket

type
N-image of morphism
into terminal object/N-
truncation

N-truncation modality

Equality Diagonal function/Diagonal sub-
set/Diagonal relation

Path space object Identity type/Path type

Completely presented set Set Discrete object/0-truncated object H-level 2-type/Set/H-set
Set Set with equivalence relation Internal 0-groupoid Bishop set/Setoid with its pseudo-

equivalence relation an actual
equivalence relation

Equivalence
class/Quotient set

Quotient Quotient type

Induction Colimit Inductive type, W-type, M-type
Higher induction Higher colimit Higher inductive type
- 0-truncated higher colimit Quotient inductive type
Coinduction Limit Coinductive type
Preset Type without identity types
Set of truth values Subobject classifier Type of propositions
Domain of discourse Universe Object classifier Type universe
Modality Closure operator, (Idempotent)

monad
Modal type theory, Monad (in com-
puter science)

Linear logic (Symmetric, closed) monoidal cate-
gory

Linear type theory/Quantum com-
putation

Proof net String diagram Quantum circuit
(Absence of) contraction
rule

(Absence of) diagonal No-cloning theorem

Synthetic mathematics Domain specific embedded pro-
gramming language

Table 2: Logic, Set Theory, Category Theory, and Type Theory from [16]
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